Bi/ond to Support Muscle Mitophagy Drug Development Programs as a Recipient of the Latest Eurostars Grant Award

muscle efficiency drug development program

Consortium to generate pre-clinical data for muscle disfunction drug candidate

Delft, The Netherlands – 13 February 2024 – Bi/ond, a cutting-edge Dutch startup focused on developing organ-on-chip platforms, is one of the proud recipients of the €1.1M Eurostars grant, awarded as part of the European Partnership on Innovative Small and Medium-sized Enterprises.

The Delft-based company is partnering with Vandria (Switzerland), as well as Biomeostasis and Assistance Publique – Hôpitaux de Paris (AP-HP) (France) for this project. Bi/ond will empower the rest of the consortium with their organ-on-chip hardware technology platform that uniquely incorporates essential features required for the successful development of muscular dystrophy models.

The project is funded by the European Union through the Eurostars program with joint contributions from the Netherlands Enterprise Agency (RVO), Bpifrance and Innosuisse, and will help advance the development of Vandria’s VNA-052, a best-in-class mitophagy inducer for the treatment of muscle diseases, toward the clinical phase.

Vandria’s muscle program mitophagy drug candidate, VNA-052, is expected to improve muscle function in patients with muscle pathologies of high unmet medical needs. 

The program enables the consortium partners to make use of Bi/ond’s technology platform for the development of biological protocols and assays. A robust skeletal muscle model will be developed and used to understand what drives the muscle penetration of the drug candidate, as well as to give the possibility to study healthy versus diseased models.

AP-HP joins the consortium under the leadership of world leading sIBM expert Prof. Olivier Benveniste. The research organization will test VNA-052’s effect on immune cells from sIBM patients, as well as potential efficacy and target engagement biomarkers.

Finally, the Consortium is completed by in vivo model experts Biomeostasis who will develop a series of first-in-kind rodent models (Duchenne muscular dystrophy, sarcopenia) and downstream analysis pipelines to obtain proof of concept efficacy data for VNA-052 in other muscle indications, expanding the value of the compound and serving as mitigation for the sIBM program.

As a result of the collaboration, the group expects to be able to generate preclinical data that demonstrates the efficacy of the drug.

“The Eurostars grant presents a tremendous opportunity for Bi/ond to contribute to the development of effective therapies for muscular dystrophy, benefiting the millions of people worldwide suffering from these diseases. We are enthusiastic about leveraging our biological and engineering expertise, collaborating with pioneering organizations like Vandria, Biomeostasis and Assistance Publique – Hôpitaux de Paris (AP-HP)” states Dr. Cinzia Silvestri, CEO and co-founder of Bi/ond.


For further information contact:


Media Enquiries

Zuriñe Garcia

About Bi/ond

Bi/ond specializes in empowering biological innovations through microfabrication techniques and integrated electronics components. We engineer microfluidic chips that create reproducible biological models, reducing the need for animal testing. Our unique platform includes electrophysiology functionality, enabling stimulation and monitoring of muscle contractions. This technology is crucial for patients with rare genetic diseases, as it facilitates the development of tailored treatments. By studying organs on our platform, researchers gain insights into disease mechanisms and test the effects of drugs on human-derived tissues.


Follow us on LinkedIn:

Bi/ond and the Journey to Personalized Medicine

Journey to personalized medicine

Bi/ond has been featured in the SME Focus section of the latest Inside* industry magazine.

The article highlights Bi’ond’s mission to bridge the gap between biology and engineering, and to pave the way to more personalized medicine and medical treatments. 

We do this through regular collaborations with top institutions and medical centers across Europe to validate our technology and contribute to advancements in cancer and heart muscle tissue research.

Read more about our technology and the journey of Bi/ond in this feature piece

*Inside is the Industry Association that strives for a leading position of Europe in Intelligent Digital Systems. The multidisciplinary nature of the membership provides an excellent network for the exchange of technology ideas, build together strategic R&I agenda’s, cross-domain fertilisation, as well as for large innovation initiatives.



Cinzia Silvestri – Females to Follow Nominee

Females to follow

Our CEO, Cinzia Silvestri, is nominated to the TOPX Females to Follow Awards in the category Rising Stars in Entrepreneurship. 

The nominees are 30 amazing female professionals in the Health and Life Sciences sector.

The awards aim at empowering promising and ambitious women, and honouring inspirational females with remarkable careers, so they can be an inspiration to the next generation of women and follow in their footsteps.

The awards will give visibility and  celebrate the achievements of three winners in the categories – Rising Stars in Entrepreneurship, Industry and Science (for the full list of nominees, read here)

Voting is possible until the 4th of January 2024 trough this link, and winners will be announced at the  TOPX Summit on 18 January in Utrecht.

Bi/ond combines feeding, stimulating and monitoring of cells in one microchip

Lab researcher with microscope

We have been featured in the latest Labvision magazine issue !

For a few months, our biology team has been using a Nikon microscope to image some of our experiments. For the moment, we have used it mostly with fixed tissue slides on the basis of fluorescence to look at the suitable expression markers of different cell types, and confirm that the barrier functions properly. 

As next step, we will also do live cell experiments with it, for instance to follow up how cells move from one to another compartment; or if you have muscle tissue in a pillar in our MUSbit, to observe how the flow of medicine affects the muscle contraction.

If you have a hard copy of the magazine, go to pages 56-59 to read more. 

If not, check the article here to discover multiple applications of our organ-on-chip technology that can help your own research. 

Bi/ond to participate in the MAGIC Project: Accelerating Development of Genetic Therapies for Muscular Dystrophies 

Magic Project announcement

Delft, July 11th, 2023

Bi/ond is proud to announce its participation in the groundbreaking project called “MAGIC” (Next-generation Models And Genetic therapIes for rare neuromusCular diseases). This ambitious four-year initiative, jointly funded with approximately 9.5 million EUR by Horizon Europe, UK Research and Innovation (UKRI), and the State Secretariat for Education, Research and Innovation of Switzerland (SERI), aims to revolutionize the treatment landscape for muscular dystrophies—a group of severe genetic disorders currently lacking effective therapies.

Muscular dystrophies (MDs) are characterised by muscle wasting, impaired mobility, and premature death, presenting significant challenges for patients and researchers alike. The lack of robust human(ised) models for development of advanced therapies has been a major barrier to clinical translation in the field of genetic therapies for muscle diseases. The MAGIC consortium is determined to overcoming this challenge by developing advanced models of human skeletal muscle pathophysiology and innovative gene therapy vectors.

Led by Prof. Francesco Saverio Tedesco (scientific coordinator; University College London and The Francis Crick Institute) with the support of Dr Mario Amendola (Inserm, coordinating institution), the MAGIC consortium brings together 15 partners from 9 countries, including 8 from academia/research hospitals, 4 SMEs among which, Bi/ond, and 3 charities/NGOs. (*)

By combining expertise in muscle stem cells, regeneration and disease modeling, microfabrication, and microfluidic technologies, the consortium aims to generate advanced multicellular models of neuromuscular diseases using “muscle-on-chip” devices. These devices will be utilized to test genetic therapies and genome editing strategies. 

Bi/ond will empower the consortium partners by providing the technological platform and its biological expertise in the field of muscle-on-chip models. Bi/ond will support the development of multilineage 3D muscle models using human primary and iPSC-derived cells, enabling the creation of robust in vitro models of human muscle and neuromuscular disorders.

We aim at revolutionizing muscular dystrophy treatment through the MAGIC Project, harnessing the power of Bi/ond’s cutting-edge technology. By uniting with esteemed researchers and partners worldwide, we will do our best to bring hope and transformation to the lives of patients who can’t wait any longer” – Cinzia Silvestri, CEO of Bi/Ond solutions.

Professor Francesco Saverio Tedesco is optimistic about the impact of MAGIC: “This project represents a significant step forward in the search for effective treatments for muscular dystrophies. Through cutting-edge bioengineering, innovative genetic therapies, and advanced preclinical translation, we aim to make a difference in the lives of people affected by these devastating diseases.”.” Professor of Neuromuscular Biology and Regenerative Medicine, University College London, Senior Group Leader, The Francis Crick Institute. 

For more information about Bi/ond’s involvement in the MAGIC project, please contact through the details below, or visit or the project website. 

Zuriñe Garcia
Marketing Lead

*: BI/OND Solutions (Netherlands), Inserm (France), Hannover University Medical School (Germany), Université Paris XII Val de Marne (France), Cincinnati Children’s Hospital Medical Center (USA), The Francis Crick Institute (UK), King’s College London (UK), National University of Ireland Maynooth (Ireland), Muscular Dystrophy UK (UK), Parent Project APS (Italy), Duchenne Data Foundation (Netherlands), VIVE Biotech (Spain), ReiThera (Italy), Dinaqor Dynamics (Switzerland) and University College London (UK).

About Bi/ond:

Bi/ond specializes in empowering biological innovations through microfabrication techniques and integrated electronics components. We engineer microfluidic chips that create reproducible biological models, reducing the need for animal testing. Our unique platform includes electrophysiology functionality, enabling stimulation and monitoring of muscle contractions. This technology is crucial for patients with rare genetic diseases, as it facilitates the development of tailored treatments. By studying organs on our platform, researchers gain insights into disease mechanisms and test the effects of drugs on human-derived tissues. Choose Bi/ond for advanced technology and dedicated engineering support.

About the MAGIC project:

The MAGIC (Next-generation Models and Genetic therapies for rare neuromuscular diseases) consortium brings together leading international institutions, biotech companies and patient advocacy groups to accelerate the development of gene therapies for muscular dystrophies. By creating advanced human quasi vivo models, developing tissue-specific vectors, and exploring gene editing strategies, the consortium aims to overcome the barriers that have hindered the translation of genetic therapies into clinical applications. Through collaboration, innovation, and a patient-centred approach, the MAGIC consortium is committed to making a meaningful impact on the lives of individuals affected by muscular dystrophies.

This work is funded by UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee grant numbers 10080927, 10079726, 10082354 and 10078461.

Project Original Press release

Bi/ond to take part in newly launched NXTGEN HIGHTECH initiative

logo biond and NXTGEN HIGHTECH

Innovative high-tech program puts the Netherlands on the global map

NXTGEN HIGHTECH program officially launched after final approval from the Ministry of Economic Affairs and Climate Policy. Bi/ond to be a participant in the initiative. 

Eindhoven, 9 May 2023 – Organs-on-chips, recyclable wind turbine blades and hands-free food production. This may sound a long way off, but within the NXTGEN HIGHTECH program, people are working on this tirelessly. With the support of the National Growth Fund, more than 330 parties from industry and knowledge institutes will work together on new high-tech machinery and production technologies to bring these developments to market. 

The Netherlands is an international frontrunner in ultra-precise high-tech equipment. Yet the continuity of this position is threatened by political interests and growing competition from other continents. In addition, Research & Development investments are significantly lower compared to other knowledge-based countries, at the expense of growth. The goal of NXTGEN HIGHTECH is to bring the Netherlands back to the top as well as contribute to solutions for major societal challenges.

To achieve this, the NXTGEN HIGHTECH program is investing around €1 billion until 2030 and will, in collaboration with 330 partners, boost the Dutch economy. The National Growth Fund supports this program with €450 million. ‘The urgency for new technology applications is high, and we need solutions now,’ says Marc Hendrikse, Board Chairman of NXTGEN HIGHTECH. ‘The strength lies in the breadth of the program. It not only works on new applications and technologies but also digitizing factories and the supply chain,’ he states. A unique approach that not only strengthens the position of the Dutch high-tech sector but also significantly increases our competitive position. With these partnerships, the Netherlands and Europe hold their own in the competitive knowledge economy we find ourselves in. 

Cross-connections accelerate growth 

In the next seven years, the six key domains (agrifood, biomedical production technology, energy, composite, laser-satellite communication and semiconductors) will work hard on various smart solutions. Across these domains, the key technologies, systems engineering and smart industry, play a crucial role. For instance, using smart solutions, sensor technology, and robotics applications are being explored within the agrifood domain. These applications are already widely used in other domains; however, for example food production processing has so far benefited less from this growing robotization and automation. Many operations are currently still done manually—an inhibiting factor for this sector, where less and less people are available. 

NXTGEN HICHTECH’s impact on the future 

Looking to the future, in the short term, the NXTGEN HIGHTECH program offers solutions to several problems within the top sector High Tech Systems and Materials (HTSM). For instance, it is exploring a universal standard for the pharmaceutical industry and the large-scale production of organs-on-chips. Work is being done on safe and sustainable data-communication equipment within laser-satellite communication. The energy domain is committed to developing an integrated, scalable production chain for fuel cells, electrolysers, batteries, and plasma conversion. This enables the sustainability of the process industry. 

With the developments of machinery for light materials, the composite domain lays the foundation for a sustainable aerospace industry. The semiconductors domain works on equipment for faster and more energy efficient chips, partially using light to transmit data. This is a significant development, as demand for chips is expected to double by 2030. The European Chips Act, therefore, aims to strengthen European leadership and increase production capacity to 20% of the global chip market.

The program can potentially give the Netherlands a key position in the market. Finally, NXTGEN HIGHTECH aims to have developed a system for autonomously operating factories by 2030, with international standards and digital product passports. This will ensure an excellent digital infrastructure and greater security within the supply chain. The ambition of the smart-industry sub-program is to double the production capacity in the Dutch industry in the next 20 years. 

The Dutch Systems Engineering approach 

Parallel to the developments in the six domains, work is being done to strengthen the competencies of the systems engineering profession. The Netherlands already boasts a thriving high-tech industry and a lot of experience in systems engineering. However, it remains a challenge to properly transfer knowledge of increasingly complex systems to the next generation. 

In collaboration with colleges and universities, NXTGEN HIGHTECH is laying the building blocks for sustainable cooperation in the high-tech industry. The goal is for “The Dutch Systems Engineering Approach” to be fully embedded in Dutch education by 2030. This approach offers greater job prospects in the high-tech industry and ensures an excellent connection to the rapidly changing labor market. Only by continuing to invest in technical knowledge and skills will the Netherlands become future-proof.

“At Bi/ond, were proud to be part of NXTGEN HIGHTECH’s cutting-edge technology development, with a focus on organ-on-chip tech. Our chips simulate organs, accelerating medicine discovery while reducing animal testing. This tech has the potential to revolutionize medicine. Were excited to help make the Dutch high-tech equipment ecosystem a leading cluster in Europe by 2030”. Cinzia silvestri, CEO and co-founder of Bi/ond.


For more information and inquiries about Bi/ond’s participation in the NXTGEN HIGHTECH initiative, please contact:  

For the original press release, please refer to the NXTGEN HIGHTECH site.

Bi/ond secures over $4M in funding

Cinzia Silvestri and Nikolas Gaio - CEO and CTO Bi/ond

Organ-on-a-chip success with leading European European research institutions fuels Bi/ond Investment.

$4+ Million Raised to Date with Leading

SAN FRANCISCO, California and DELFT, Netherlands, March 4th, 2022Bi/ond, one of the world’s leading Organ-on-a-Chip technology firms, today announced that its commercial and clinical success working with two of Europe’s top 10 leading medical centers has led to a total of over $4 million in funding, including investment from the leading industrial venture firm

Bi/ond’s technology has already been deployed across Europe, including at Leiden University Medical Center, where clinicians are making heart tissues using Bi/ond’s microchips and Erasmus University Medical Center where researchers are using patients’ own breast cancer samples to guide therapy. The Bi/ond organ-on-chip platform combines 3-D microfluidic cell cultures with an integrated circuit (microchip) to simulate the biological activity, mechanics and physiological response of an entire organ or organ system.

Bi/ond is led by Cinzia Silvestri, PhD., a leader in nanomaterials and silicon microfabrication for biotechnology who has also been acknowledged for advancing diversity in a male-dominated sector.

“Balancing microelectronics with the delicate requirements of tissue and muscle development on a chip is the hardest part of developing Organ-on-a-Chip and that’s what we cracked early on,” said Dr. Silvestri, co-founder and Chief Executive Officer at Bi/ond. “This new investment has come not just because of the innovations that we developed in these areas, but also because of the clinical proof our partners demonstrated in the laboratories across Europe’s leading medical organizations. We thank for leading the round and recognizing this.”

“Cinzia and her team have done an amazing job of creating innovations around Organ-on-a-Chip and getting the platform into the hands of clinicians so that they can deliver therapeutics to patients,” said Robin van Boxsel, Partner at “We are a strong believer that their technology will play a key role in improving future drug development and we are excited to be part of their journey.”

The Bi/ond platform enables the culturing of complex 3D tissues (organoids, ex vivo tissue, spheroids and microtissues) for applications in kidney research, oncology and cardiac simulation.

  • At the Leiden University Medical Center, Bi/ond chips are used to create the environment for beating heart muscle tissues derived from induced pluripotent stem cells. Such induced pluripotent stem cells can be made, for example, from the skin of patients, allowing clinicians to obtain heart tissue with the patient’s genetic background. They are now starting to expose the beating heart tissues to drugs to analyze how they respond, potentially to predict how patients will respond as well.
  • At the Erasmus University Medical Center, researchers have built a microfluidic platform for the assessment of treatment response using patients’ own tumor tissue slices under precisely controlled growth conditions. This enables them to keep breast cancer tumor tissues alive for a long time to study responses to chemotherapy and to choose the proper treatment for each individual cancer patient.

“We’re using Bi/ond for breast cancer therapy response in a more controlled way that enables us to use tissue slices for long-term research, something that has not been possible for us before,” said Dr. Dik Van Gent.

About Bi/ond

Bi/ond is one of the global leaders in Organ-on-a-Chip technologies.

Organ-on-a-Chip combines 3-D microfluidic cell cultures with a microchip to simulate the behavior, mechanics and physiological response of an entire organ or organ system. The expertise of Dr. Nikolas Gaio, Bi/ond Chief Technology Officer has enabled the company to deliver reproducible and scalable chips for high content biological assay, something that is critical for consistency and ongoing monitoring in clinical research.

The company has raised more than $4 million in funding, including a lead by the industrial venture firm, which specializes in investing in game-changing high-tech innovations.

Media Enquiries

More news like this

Bi/ond’s team welcomes a new advisor Ewoud Ouwerkerk

Ewoud Ouwerkerk

Bi/ond is getting ready to officially launch its microchip solution for culturing complex 3D tissues and to do so, it is partnering with a brilliant and well-experienced individual, Ewoud Ouwerkerk, Commercial Director of Twist Bioscience.

Bi/ond is a rapidly growing company empowering biological innovation by engineering microchips that nourish, stimulate, and monitor cells enabling biological innovation.

The potential of this technology meets the successful experience of Ewoud Ouwerkerk in supporting innovative biotech companies.

Ewoud will work closely with the leadership team as Bi/ond introduces microchip solutions for culturing complex 3D tissues (organoids, ex vivo tissue, spheroids, microtissues).

“Ewoud is a unique leader who has a track record of exceptional commercial strategy and execution,” said Cinzia Silvestri, co-Founder and CEO of BIOND.

“His phenomenal success at Twist Bioscience illustrates his ability to support the building of a world-class organization. We look forward to Ewoud’s guidance as we advance our first product to market in support of our mission to develop INCLUSIVE and PRECISE cures for all by engineering microchips that mimic a human body. This collaboration with Ewoud Ouwerkerk will boost adoption of Microphysiological system solutions and unlock the full potential of Bi/ond on the market.”

Ewoud Ouwerkerk currently serves as EMEA’s Commercial Director of US biotech company Twist Bioscience, a leading synthetic biology and genomics company, where he is responsible for planning, developing and implementing commercial strategies with the main goal to support and accelerate growth. He joined Twist just prior to the launch of its synbio product line and subsequently supported the introduction of the next-generation sequencing (NGS) portfolio. Prior to joining Twist Bioscience, during the past 20 years, he held positions of increasing commercial focus. Ewoud holds a degree in biochemistry and business administration.

Augmented Reality Solutions for Organ-on-Chip applications

Augmented Reality Solutions for OOC applications

Can you imagine a world where biologists will develop medicines directly from home using Augmented and Virtual Reality solutions?

That world is almost here.

Last week we interviewed our CTO, Nikolas Gaio and Emanuele Borasio, CEO and founder of

weAR s.r.l. to discuss the "ARinBio" project. A collaboration funded by DIGIBCUBE

that aims to develop an Augmented Reality solution for Bi/ond's Organ-on-Chip system.

How can Augmented Reality make biological R&D faster and more accurate?

The biotech field just found an ally in Augmented Reality (AR), and two companies are looking for researchers to start a pilot.

Could you imagine a biologist developing and testing a new drug from home?

Emanuele Borasio, CEO and founder at weAR and Nikolas Gaio, co-founder at Bi/ond, have a clear vision for their ambitious project: enable biologists to process data, perform experiments and collaborate by using AR and Virtual Reality (VR).

The project is called ARinBIO, and it is as ambitious as realistic.

AR in organ On chips ARinBIO

AR and VR are already used in several fields, such as pilot training and supporting surgeons.

How can AR contribute to new drug discoveries and developing new solutions in biotech?

Emanuele Borasio (EB): Immersive technologies such as AR ad VR have been used since the ‘60, the problem was the lack of an appropriate hosting device. Now, everyone can acquire accurate devices like Oculus Quest, and you can share virtual content with a large audience.

You can use immersive technology to fix problems inside devices, and by using AR glasses you can have a clear overview of the instruction manual while you are performing a procedure.

You can represent a lot of information in real-time by pointing your device, putting on glasses, and seeing how to fix a problem.

You can even enter a virtual reality room where you can collaborate and work on building up a piece of machine together.

How can AR support biologists and biotech? And what has been done so far?

With AR, researchers can see the information appearing next to advanced tools like Organ-on-Chips (OOC), check the user manual and upload data.

Nikolas Gaio (NG): I believe that AR and VR in biotech could enable a new way to visualize data and make decisions in the biological lab. Biologists will be able to inspect more data in parallel, and understand what is happening to some samples without going back and forth to the lab. The intermediate and manual steps required to perform an experiment are actually making the process more prone to error by delaying the biologists’ decision.

In many cases, biologists are taking hundreds of pictures and graphs hosted on a PC that is not in the lab. With AR they could enter the images gallery without moving. This new approach will minimize the time while increasing the accuracy.

We believe that one day those data could also enable us to predict results and visualize the prediction through the glasses or a tablet.

Streamlining every step in the biological labs could also get us a step closer to personalized medicine, which requires even more accurate data. Our aim is to help biologists to handle the growing amount of data and empower them to perform personalized testing with a high level of accuracy.

VR view of a closed box

You are now launching the ARinBIO project. What is it about and how are you going to collaborate if you are in different countries?

ARinBIO started from the needs of our customers, which are working on Organ-on-chip and in vitro models. Those researchers are looking for adding more complexity in their model by collecting data from sensors, while using a simple procedure to perform their tests.

Thanks to the experiences of our customers, we had the idea of using AR to enable complexity by using intuitive tools.

We approached weAR suggesting this project, and they were enthusiastic to collaborate with us. After that, we applied and received a European grant from the DIGIBCUBE ( to support our activities.

We are looking for early adopters: biologists working with OOC technology willing to use this prototype to make their research more effective and their results more predictable.

Everyone following this description is welcome.

EB: At weAR, we have been already testing our technology with surgeons operating hands-free on a 3D model of a human body. The results are astonishing.

Indeed, the use of smart glasses will enable biologists to operate hands-free, far away from the lab, or even by working from home. Our aim is to speed up the development of personalized medicine with a tool that enables complexity with an intuitive user experience.

How do you see AR and biotech finding solutions together?

EB: AR is a shortcut to communicate better, faster and more efficiently. In the near future, I see a combined use of human factors and AI to solve critical issues while operating safely. Operating with AI requires more data for training the algorithms, so we’ll need to use AR in OOC for a while to collect the information and eventually enable AI in the lab to make better and more accurate suggestions.

NG: We could see a future where biologists won’t necessarily need to enter the lab. A virtual reality solution will enable biologists to control the lab from the office. This would cut the costs and the risks of performing experiments in the lab with viruses, and empower biologists to use more time to elaborate the results instead of performing the experiment.

The combination of OOC technology and AR will radically change the approach to drug testing and data management in the biotech field. Bi/ond and weAR are ready to launch the pilot and willing to collaborate with ambitious researchers to make the next step towards better, more accurate, and personalized medicine.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824920.

AR gear