Bi/ond to take part in newly launched NXTGEN HIGHTECH initiative

logo biond and NXTGEN HIGHTECH

Innovative high-tech program puts the Netherlands on the global map


NXTGEN HIGHTECH program officially launched after final approval from the Ministry of Economic Affairs and Climate Policy. Bi/ond to be a participant in the initiative. 

Eindhoven, 9 May 2023 – Organs-on-chips, recyclable wind turbine blades and hands-free food production. This may sound a long way off, but within the NXTGEN HIGHTECH program, people are working on this tirelessly. With the support of the National Growth Fund, more than 330 parties from industry and knowledge institutes will work together on new high-tech machinery and production technologies to bring these developments to market. 

The Netherlands is an international frontrunner in ultra-precise high-tech equipment. Yet the continuity of this position is threatened by political interests and growing competition from other continents. In addition, Research & Development investments are significantly lower compared to other knowledge-based countries, at the expense of growth. The goal of NXTGEN HIGHTECH is to bring the Netherlands back to the top as well as contribute to solutions for major societal challenges.

To achieve this, the NXTGEN HIGHTECH program is investing around €1 billion until 2030 and will, in collaboration with 330 partners, boost the Dutch economy. The National Growth Fund supports this program with €450 million. ‘The urgency for new technology applications is high, and we need solutions now,’ says Marc Hendrikse, Board Chairman of NXTGEN HIGHTECH. ‘The strength lies in the breadth of the program. It not only works on new applications and technologies but also digitizing factories and the supply chain,’ he states. A unique approach that not only strengthens the position of the Dutch high-tech sector but also significantly increases our competitive position. With these partnerships, the Netherlands and Europe hold their own in the competitive knowledge economy we find ourselves in. 

Cross-connections accelerate growth 

In the next seven years, the six key domains (agrifood, biomedical production technology, energy, composite, laser-satellite communication and semiconductors) will work hard on various smart solutions. Across these domains, the key technologies, systems engineering and smart industry, play a crucial role. For instance, using smart solutions, sensor technology, and robotics applications are being explored within the agrifood domain. These applications are already widely used in other domains; however, for example food production processing has so far benefited less from this growing robotization and automation. Many operations are currently still done manually—an inhibiting factor for this sector, where less and less people are available. 

NXTGEN HICHTECH’s impact on the future 

Looking to the future, in the short term, the NXTGEN HIGHTECH program offers solutions to several problems within the top sector High Tech Systems and Materials (HTSM). For instance, it is exploring a universal standard for the pharmaceutical industry and the large-scale production of organs-on-chips. Work is being done on safe and sustainable data-communication equipment within laser-satellite communication. The energy domain is committed to developing an integrated, scalable production chain for fuel cells, electrolysers, batteries, and plasma conversion. This enables the sustainability of the process industry. 

With the developments of machinery for light materials, the composite domain lays the foundation for a sustainable aerospace industry. The semiconductors domain works on equipment for faster and more energy efficient chips, partially using light to transmit data. This is a significant development, as demand for chips is expected to double by 2030. The European Chips Act, therefore, aims to strengthen European leadership and increase production capacity to 20% of the global chip market.

The program can potentially give the Netherlands a key position in the market. Finally, NXTGEN HIGHTECH aims to have developed a system for autonomously operating factories by 2030, with international standards and digital product passports. This will ensure an excellent digital infrastructure and greater security within the supply chain. The ambition of the smart-industry sub-program is to double the production capacity in the Dutch industry in the next 20 years. 

The Dutch Systems Engineering approach 

Parallel to the developments in the six domains, work is being done to strengthen the competencies of the systems engineering profession. The Netherlands already boasts a thriving high-tech industry and a lot of experience in systems engineering. However, it remains a challenge to properly transfer knowledge of increasingly complex systems to the next generation. 

In collaboration with colleges and universities, NXTGEN HIGHTECH is laying the building blocks for sustainable cooperation in the high-tech industry. The goal is for “The Dutch Systems Engineering Approach” to be fully embedded in Dutch education by 2030. This approach offers greater job prospects in the high-tech industry and ensures an excellent connection to the rapidly changing labor market. Only by continuing to invest in technical knowledge and skills will the Netherlands become future-proof.

“At Bi/ond, were proud to be part of NXTGEN HIGHTECH’s cutting-edge technology development, with a focus on organ-on-chip tech. Our chips simulate organs, accelerating medicine discovery while reducing animal testing. This tech has the potential to revolutionize medicine. Were excited to help make the Dutch high-tech equipment ecosystem a leading cluster in Europe by 2030”. Cinzia silvestri, CEO and co-founder of Bi/ond.

—- 

For more information and inquiries about Bi/ond’s participation in the NXTGEN HIGHTECH initiative, please contact: info@gobiond.com.  

For the original press release, please refer to the NXTGEN HIGHTECH site.

Bi/ond secures over $4M in funding

Organ-on-a-chip success with leading European European research institutions fuels Bi/ond Investment.

$4+ Million Raised to Date with FORWARD.one Leading

SAN FRANCISCO, California and DELFT, Netherlands, March 4th, 2022Bi/ond, one of the world’s leading Organ-on-a-Chip technology firms, today announced that its commercial and clinical success working with two of Europe’s top 10 leading medical centers has led to a total of over $4 million in funding, including investment from the leading industrial venture firm FORWARD.one.

Bi/ond’s technology has already been deployed across Europe, including at Leiden University Medical Center, where clinicians are making heart tissues using Bi/ond’s microchips and Erasmus University Medical Center where researchers are using patients’ own breast cancer samples to guide therapy. The Bi/ond organ-on-chip platform combines 3-D microfluidic cell cultures with an integrated circuit (microchip) to simulate the biological activity, mechanics and physiological response of an entire organ or organ system.

Bi/ond is led by Cinzia Silvestri, PhD., a leader in nanomaterials and silicon microfabrication for biotechnology who has also been acknowledged for advancing diversity in a male-dominated sector.

“Balancing microelectronics with the delicate requirements of tissue and muscle development on a chip is the hardest part of developing Organ-on-a-Chip and that’s what we cracked early on,” said Dr. Silvestri, co-founder and Chief Executive Officer at Bi/ond. “This new investment has come not just because of the innovations that we developed in these areas, but also because of the clinical proof our partners demonstrated in the laboratories across Europe’s leading medical organizations. We thank FORWARD.one for leading the round and recognizing this.”

“Cinzia and her team have done an amazing job of creating innovations around Organ-on-a-Chip and getting the platform into the hands of clinicians so that they can deliver therapeutics to patients,” said Robin van Boxsel, Partner at FORWARD.one. “We are a strong believer that their technology will play a key role in improving future drug development and we are excited to be part of their journey.”

The Bi/ond platform enables the culturing of complex 3D tissues (organoids, ex vivo tissue, spheroids and microtissues) for applications in kidney research, oncology and cardiac simulation.

  • At the Leiden University Medical Center, Bi/ond chips are used to create the environment for beating heart muscle tissues derived from induced pluripotent stem cells. Such induced pluripotent stem cells can be made, for example, from the skin of patients, allowing clinicians to obtain heart tissue with the patient’s genetic background. They are now starting to expose the beating heart tissues to drugs to analyze how they respond, potentially to predict how patients will respond as well.
  • At the Erasmus University Medical Center, researchers have built a microfluidic platform for the assessment of treatment response using patients’ own tumor tissue slices under precisely controlled growth conditions. This enables them to keep breast cancer tumor tissues alive for a long time to study responses to chemotherapy and to choose the proper treatment for each individual cancer patient.

“We’re using Bi/ond for breast cancer therapy response in a more controlled way that enables us to use tissue slices for long-term research, something that has not been possible for us before,” said Dr. Dik Van Gent.

About Bi/ond

Bi/ond is one of the global leaders in Organ-on-a-Chip technologies.

Organ-on-a-Chip combines 3-D microfluidic cell cultures with a microchip to simulate the behavior, mechanics and physiological response of an entire organ or organ system. The expertise of Dr. Nikolas Gaio, Bi/ond Chief Technology Officer has enabled the company to deliver reproducible and scalable chips for high content biological assay, something that is critical for consistency and ongoing monitoring in clinical research.

The company has raised more than $4 million in funding, including a lead by the industrial venture firm FORWARD.one, which specializes in investing in game-changing high-tech innovations.

Media Enquiries

biond@consortpartners.com

Bi/ond’s team welcomes a new advisor Ewoud Ouwerkerk

Bi/ond is getting ready to officially launch its microchip solution for culturing complex 3D tissues and to do so, it is partnering with a brilliant and well-experienced individual, Ewoud Ouwerkerk, Commercial Director of Twist Bioscience.

Bi/ond is a rapidly growing company empowering biological innovation by engineering microchips that nourish, stimulate, and monitor cells enabling biological innovation.

The potential of this technology meets the successful experience of Ewoud Ouwerkerk in supporting innovative biotech companies.

Ewoud will work closely with the leadership team as Bi/ond introduces microchip solutions for culturing complex 3D tissues (organoids, ex vivo tissue, spheroids, microtissues).

“Ewoud is a unique leader who has a track record of exceptional commercial strategy and execution,” said Cinzia Silvestri, co-Founder and CEO of BIOND.

“His phenomenal success at Twist Bioscience illustrates his ability to support the building of a world-class organization. We look forward to Ewoud’s guidance as we advance our first product to market in support of our mission to develop INCLUSIVE and PRECISE cures for all by engineering microchips that mimic a human body. This collaboration with Ewoud Ouwerkerk will boost adoption of Microphysiological system solutions and unlock the full potential of Bi/ond on the market.”

Ewoud Ouwerkerk currently serves as EMEA’s Commercial Director of US biotech company Twist Bioscience, a leading synthetic biology and genomics company, where he is responsible for planning, developing and implementing commercial strategies with the main goal to support and accelerate growth. He joined Twist just prior to the launch of its synbio product line and subsequently supported the introduction of the next-generation sequencing (NGS) portfolio. Prior to joining Twist Bioscience, during the past 20 years, he held positions of increasing commercial focus. Ewoud holds a degree in biochemistry and business administration.

Augmented Reality Solutions for Organ-on-Chip applications

Can you imagine a world where biologists will develop medicines directly from home using Augmented and Virtual Reality solutions?

That world is almost here.

Last week we interviewed our CTO, Nikolas Gaio and Emanuele Borasio, CEO and founder of

weAR s.r.l. to discuss the "ARinBio" project. A collaboration funded by DIGIBCUBE

that aims to develop an Augmented Reality solution for Bi/ond's Organ-on-Chip system.

How can Augmented Reality make biological R&D faster and more accurate?

The biotech field just found an ally in Augmented Reality (AR), and two companies are looking for researchers to start a pilot.

Could you imagine a biologist developing and testing a new drug from home?

Emanuele Borasio, CEO and founder at weAR and Nikolas Gaio, co-founder at Bi/ond, have a clear vision for their ambitious project: enable biologists to process data, perform experiments and collaborate by using AR and Virtual Reality (VR).

The project is called ARinBIO, and it is as ambitious as realistic.

AR and VR are already used in several fields, such as pilot training and supporting surgeons.

How can AR contribute to new drug discoveries and developing new solutions in biotech?

Emanuele Borasio (EB): Immersive technologies such as AR ad VR have been used since the ‘60, the problem was the lack of an appropriate hosting device. Now, everyone can acquire accurate devices like Oculus Quest, and you can share virtual content with a large audience.

You can use immersive technology to fix problems inside devices, and by using AR glasses you can have a clear overview of the instruction manual while you are performing a procedure.

You can represent a lot of information in real-time by pointing your device, putting on glasses, and seeing how to fix a problem.

You can even enter a virtual reality room where you can collaborate and work on building up a piece of machine together.

How can AR support biologists and biotech? And what has been done so far?

With AR, researchers can see the information appearing next to advanced tools like Organ-on-Chips (OOC), check the user manual and upload data.

Nikolas Gaio (NG): I believe that AR and VR in biotech could enable a new way to visualize data and make decisions in the biological lab. Biologists will be able to inspect more data in parallel, and understand what is happening to some samples without going back and forth to the lab. The intermediate and manual steps required to perform an experiment are actually making the process more prone to error by delaying the biologists’ decision.

In many cases, biologists are taking hundreds of pictures and graphs hosted on a PC that is not in the lab. With AR they could enter the images gallery without moving. This new approach will minimize the time while increasing the accuracy.

We believe that one day those data could also enable us to predict results and visualize the prediction through the glasses or a tablet.

Streamlining every step in the biological labs could also get us a step closer to personalized medicine, which requires even more accurate data. Our aim is to help biologists to handle the growing amount of data and empower them to perform personalized testing with a high level of accuracy.

You are now launching the ARinBIO project. What is it about and how are you going to collaborate if you are in different countries?

ARinBIO started from the needs of our customers, which are working on Organ-on-chip and in vitro models. Those researchers are looking for adding more complexity in their model by collecting data from sensors, while using a simple procedure to perform their tests.

Thanks to the experiences of our customers, we had the idea of using AR to enable complexity by using intuitive tools.

We approached weAR suggesting this project, and they were enthusiastic to collaborate with us. After that, we applied and received a European grant from the DIGIBCUBE (https://digibcube.eu) to support our activities.

We are looking for early adopters: biologists working with OOC technology willing to use this prototype to make their research more effective and their results more predictable.

Everyone following this description is welcome.

EB: At weAR, we have been already testing our technology with surgeons operating hands-free on a 3D model of a human body. The results are astonishing.

Indeed, the use of smart glasses will enable biologists to operate hands-free, far away from the lab, or even by working from home. Our aim is to speed up the development of personalized medicine with a tool that enables complexity with an intuitive user experience.

How do you see AR and biotech finding solutions together?

EB: AR is a shortcut to communicate better, faster and more efficiently. In the near future, I see a combined use of human factors and AI to solve critical issues while operating safely. Operating with AI requires more data for training the algorithms, so we’ll need to use AR in OOC for a while to collect the information and eventually enable AI in the lab to make better and more accurate suggestions.

NG: We could see a future where biologists won’t necessarily need to enter the lab. A virtual reality solution will enable biologists to control the lab from the office. This would cut the costs and the risks of performing experiments in the lab with viruses, and empower biologists to use more time to elaborate the results instead of performing the experiment.

The combination of OOC technology and AR will radically change the approach to drug testing and data management in the biotech field. Bi/ond and weAR are ready to launch the pilot and willing to collaborate with ambitious researchers to make the next step towards better, more accurate, and personalized medicine.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824920.

UNIIQ Invests €250,000 in Bio-Tech Start-up BIOND Solutions

Delft, 8 October 2020 – BIOND Solutions (Bi/ond), a spin-off of Delft University of Technology, has developed a microchip that can nourish, stimulate and monitor tissues and cells. The company has just secured €250,000 of growth capital from early-stage investment fund UNIIQ. Bi/ond will use part of the investment to expand its already strong team with engineers to work on scaling up the highly promising technology. It will also invest in research and development and intellectual property activities. The investment was announced digitally by Bas Vollebregt, member of Delft city council.

Going beyond                                   

Humans are all different in unique ways, but modern medical treatments ignore genetic variations among individuals. People of different ethnicities, genders and ages have to take drugs that were developed based on genetic criteria entirely different from their own.

Moreover, current research methodologies for developing cures for diseases compel biologists to choose between two options: tests conducted on animals or in vitro studies involving cells cultivated in labware such as petri dishes. Both of these approaches do not sufficiently address human diversity. They fail to adequately predict what will happen in people because the environment created for the cells does not sufficiently resemble conditions in the human body. Bi/ond has devised a tool to overcome this problem.

The power of microelectronics

Founded in 2017, Bi/ond has developed a computer chip and platform where biologists can place an individual’s cells. The microchip nourishes, stimulates and monitors the cells as though they were in the body. Bi/ond’s patented organ-on-chip technology allows treatment to be optimised for different applications, including heart, lung, brain and cancer tissues. These dynamic functionalities allow researchers to find the right medicine for a specific individual, paving the way for personalised medicine. The product’s uniqueness derives from the power of microelectronics.

Bi/ond’s relatively cheap and highly customisable technology can be used to conduct ground-breaking research by growing 3D cell cultures in an environment that mimics the human body. Organ-on-chip is a very promising methodology that is expected to lead to improved success in drug development, lower costs and less animal testing.

Step forward

Two of Bi/ond’s co-founders, CSO William Fausto Quiros Solano and CTO Nikolas Gaio, possess in-depth knowledge of microelectronics and experience with biological solutions. Their insights led to the technological breakthrough. “With our product, we aim to bridge the gap between biology and engineering”, Nikolas Gaio explains. “To build that bridge, we currently have a diverse, interdisciplinary team of six members.” Bi/ond will use part of the €250,000 investment to expand its team with engineers who will work on scaling up the product.

The company’s third co-founder, CEO Cinzia Silvestri, is delighted with UNIIQ’s confidence in Bi/ond’s team and technology: “Thanks to the investment, we can strengthen product development, further invest in our IP portfolio and broaden our customer base. Prestigious hospitals and universities in Europe are already using our product for various purposes, including assessing chemotherapies and studying rare diseases. We want to provide a reliable tool for biologists to develop personalised, inclusive drug testing. This investment is a step towards achieving that goal.”

Hans Dreijklufft, fund manager at UNIIQ: “By developing personalised medicine and reducing animal testing, organ-on-chip technology has the potential to significantly impact human health and animal well-being. We are therefore very happy to invest in Bi/ond. The company’s strong, diverse team is active in many national and European consortia and able to connect with big players in the medical and research world. UNIIQ is pleased to finance this spin-off of Delft University of Technology to help it grow and develop its advanced chip and plate application.”

For more information on this topic, please contact:

 Bi/ond

Cinzia Silvestri

CEO

Email: cinzia@biondteam.com

www.gobiond.com

 

UNIIQ

Ludolf Stavenga

Investment Manager

+31 6 535 98 266

ludolf.stavenga@uniiq.nl

UNIIQ.nl

About Bi/ond

Bio-tech company Bi/ond was founded in 2017 to improve medical treatment for millions of patients by developing innovative hardware solutions for organ-on-chip applications. Its customisable microchips and platform technology can be used to nourish, stimulate and monitor tissues and cells, facilitating biomedical research that reflects humanity’s natural diversity. This allows for more accurate drug testing and simulations of any tissue type, paving the way for personalised medicine. Based in Delft, the Netherlands, Bi/ond provides its lab technology to some of the top hospitals in Europe and collaborates with many technical institutes and research centres.

About UNIIQ

UNIIQ is a €22 million investment fund focused on the proof-of-concept phase, which helps entrepreneurs in West Holland bring their unique innovation to market faster. UNIIQ offers entrepreneurs the seed capital to achieve their plans and bridge the riskiest phase from concept to promising business. A consortium, including Erasmus MC, TU Delft, Leiden University and the regional development agency InnovationQuarter, created the fund. UNIIQ is made possible by the European Union, the Province of South Holland and the municipalities of Rotterdam, The Hague and Leiden. InnovationQuarter is responsible for the fund management.

Watch a short introduction to UNIIQ here: https://youtu.be/Ix9VZUsHlyU

Eurostars Project Collaboration with LUMC and Fluigent

3D Cardiac Tissues Will Be Soon Nourished and Stimulated in a Compact Format

1.4mn euro project to Bi/ond-led consortium between Bi/ond, Fluigent and LUMC to develop the first Organ-on-Chip system that can keep complex 3D tissue models alive and mimic the physiological conditions of the human body.

Delft, Leiden and Paris – October 1, 2020 – BIOND Solutions B.V. (Bi/ond), Fluigent S.A.S. and the Department of Anatomy and Embryology, Leiden University Medical Center (LUMC) joined forces to developt a compact Organ-on-Chip system for the heart.

The two companies will deliver the first-ever Organ-on-Chip (OoC) system that can keep complex 3D tissue models alive (through a vascularised channel, including microfluidic flow) while providing mechanical stimulation.

The 1.4mn euro CompactOoC-3D project has been funded by the EU under the EUROSTARS program. EUROSTARS supports the development of innovative products that impact people`s lives around the world. The grant has joint contributions from the Netherlands Enterprise Agency (RVO) and Bpifrance.

The compact OoC system will integrate the Bi/ond OoC technology with the Fluigent perfusion system and it will be qualified by LUMC for 3D cardiac tissue models based on cardiomyocytes from human induced pluripotent stem cells.

This innovative solution will save biologists time and costs, it is compact and will be usable with minimal training.

Presently, this type of study is limited by the short time that 3D tissues cultured in vitro are viable.

“We want to radically improve the quality of research on 3D tissues models by developing a compact Organ-on-Chip solution combining organ-vessel interaction and ease of use. We are delighted to run this project with LUMC and Fluigent”, states Dr. Cinzia Silvestri, CEO and co-founder of Bi/ond.

The Bi/ond – Fluigent system will mimic the physiological conditions of the human body by providing mechanical stimulation experienced by cells in vivo, nutrients to the micro-tissue through a blood vessel, or mimicking the immune system (through delivery of fluids and/or immune cells in the microchannel system). The system will offer cell co-culture support to replicate tissue-tissue interfaces.

The system that will emerge from this project will allow us to keep our complex 3D models in culture for longer periods of time. This is not just an incremental improvement but it will allow us to explore new types of biological questions such as what happens to the heart during long-term exposure to drugs used for example in chemotherapy, states Berend van Meer, researcher and project coordinator of the LUMC.

The end-goal of the project is to develop and qualify an Organ-on-Chip system suitable for complex 3D tissue models, compact enough to fit into a standard incubator tray and usable by biologists accustomed to in vitro cultures.

Enabling the development of technologies that have the potential to change and accelerate science research is at the core of Fluigent. This collaboration is a unique opportunity for Fluigent to make our premium instruments initially designed for experts in microfluidics accessible to biologists. Our high-performance systems combined with innovative 3D cellular models will allow to address questions that could not be tackled before due to technological limitations. Organ-on-chip will initiate a major shift in cell culture and Fluigent is thrilled to engage in it.” states Dr. France Hamber, CEO of Fluigent.

The collaboration between Bi/ond, Fluigent and LUMC combines cutting-edge technologies and world-leading science in a consortium that will unlock the full potential of OoC technology, and enable biologists to speed up their research by adopting a compact easy to use system.

About BIOND Solutions B.V.

Located in Delft, BIOND Solutions B.V. is a woman lead company specialized in developing the best hardware solutions to outperform the limitation of standard in vitro assays.

The company is a spin-off of the Delft University of Technology, one of the most prestigious of its kind in Europe. The unique expertise of the company lies in designing and manufacturing processing microfluidic devices based on the unique combination of silicon and polymer for Organ-on-Chip applications.

BI/OND bridges biology and engineering – through an amalgam of our in-depth knowledge of microelectronics and experience with biological solutions.

About Fluigent SAS

Located in Kremlin-Bicêtre, Fluigent SAS is a company leader in microfluidic recognized for its expertise and premium instrumentation dedicated to microfluidic fluid control. Over the years the company has developed fluid handling solutions based on its proprietary pressure control technology serving academics and industrials worldwide. Whether the application is with droplets, cell biology, particle studies, or in other research areas, the expertise and knowledge of Fluigent makes it one of the sole actor able to answer to any fluid control needs.

About Department of Anatomy and Embryology, Leiden University Medical Centre

LUMC is a modern university medical center for research, education and patient care with a high-quality profile and a strong scientific orientation. The Department of Anatomy and Embryology is specialized in stem cell research and differentiation to the cardiovascular lineage.

For further information

 

Bi/ond

Cinzia Silvestri

CEO and co-founder of Bi/ond.

Email: cinzia@biondteam.com

Nikolas Gaio

CTO and co-founder of Bi/ond.

Email: nikolas@biondteam.com

www.gobiond.com

Fluigent

France Hamber

CEO of Fluigent

Email : France.hamber@fluigent.com

Marine Verhulsel

Product Manager

Email : marine.verhulsel@fluigent.com

 William César

R&D Project Manager

Email : william.cesar@fluigent.com

www.fluigent.com/

 

LUMC

Christine Mummery

Professor

Email: c.l.mummery@lumc.nl

Berend van Meer

Researcher

Email: b.j.vanmeer@lumc.nl

www.lumc.nl/org/anatomie-embryologie

Microtas Conference 2020

This upcoming October 4 – 9, Bi/ond will have the amazing opportunity to sponsor and be an exhibitor on:

The 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences: μTas 2020

 

During the conference, topics such as Fundamentals in Microfluidics/Nanofluidics, Micro Engineering, Integrated Microfluidic Platforms, Organ-on-Chips, and personalized Medicine and its applications will be covered. 

 

  • Monday, October 5 (11:10 US Eastern / 17:10 CET),Industrial Stage 2.

Our CTO and Co-founder, Nikolas Gaio, will provide a 20 min demo of our system with a 5 minutes live Q&A. 

  • Thursday, October 8 (11:15 US Eastern / 17:15 CET)

Our Field Application Scientist, Amr Othman, will be present in the interactive poster session:

‘NOURISHING, MONITORING AND STIMULATING CELLS WITH BI/OND’S ORGAN-ON-CHIP DEVICE’ (#Th8-879.e) 

together with a second live Q&A session.

 

The MicroTas conference is aimed specifically for the scientific community. Featuring important speakers and activities focused towards solutions on miniaturized life sciences and chemical sciences. 

 

For more information and registration, please visit: https://microtas2020.org/

 

Q&A #OoCovid initiative

Nikolas Gaio, founder and CTO of Bi/ond, and Rosa Monge, founder and CEO of BEOnChip chats about the #OoCovid initiative and the importance of organ-on-chip.


Why did Bi/ond launch the #OoCovid initiative?

Niko: When the Covid19 outbreak started to hit Europe, everyone in BI/OND was sure that Organ-on-Chip technology could have a real impact in the fight against the Covid19. We noticed the Organ-on-Chip community was not reacting fast enough. So we decided to do something about it, and we came up with the #OoCovid initiative. This challenge aimed at three main goals.

Patient First:
First and foremost, we wanted to help Covid-19 patients by promoting donations to researchers working on studying the disease and its effects on the human body.
Unity is Strength:
Second, the initiative aimed at convincing all the OOC startups and companies to join forces and work together for a solution.
Need for change:
Third, we wanted to raise awareness regarding the need for new ways of developing drugs and vaccines, to prove that OoC is a valuable alternative.

Why did you join the #OoCovid initiative?

Rosa: Covid19 has caught us completely off-guard and has caused a global crisis that will take years to overcome. This pandemic has shown us all how fragile our economy is and how unprepared our health systems were for a worldwide pandemic. Now is the time for innovation in vitro-research, to speed up the development of new drugs, treatments and vaccines for new diseases such as Covid19. We believe that the Organ on Chip technology will have a key role in future biomedical research, and the #OoCovid initiative aims to put the OoC technology in the spotlight. #OoCovid will help researchers and private companies to understand better the possibilities of the next generation of in vitro research platforms and the importance of adopting this technology early.

How could OoC research contribute to find a solution for viruses such as the coronavirus?

Niko: We believe that OoCs will show their full potential in understanding the effect of Covid-19 on the human body. The combination of OoC and 3D tissues, such as organoids, should not only enable us to understand the mechanisms behind the infection and the damages caused by the virus on lungs, kidneys, heart but also how it interacts with the whole immune system.

Rosa: OoC technology is a powerful tool that will contribute significantly to finding solutions to the medical crisis in the future. OoC can enable us to create models of healthy organs such as a lung-on-chip, that will help us understand better the infection process or test the toxicity of a new treatment in a fast and reliable way. In addition, Organ on a chip technology allows us to model diseased organs and allows us to screen a drug efficacy using cells from a specific population group, that is known to be more susceptible to contracting an illness.

The possibilities are uncanny, and the OoC field is just currently blooming.

Which are the current limits of OoC research and could they be overcome by collaborating more within fields?

Rosa: The field is multidisciplinary. This technology combines the latest advances in tissue engineering with novel developments in microfabrication. Therefore, it is compulsory to create new communication channels between engineers and biomedical researchers to design functional, cheap and easy to use platforms.

What is the role of OOC companies in bridging the gap between research and industry?

Rosa: OoC companies have an enormous task to gather the most relevant advances in OoC technology and take them from the lab to the industry by creating reliable platforms. These platforms will save time and money for researchers and companies that can directly focus on the goal at hand: testing the efficacy or toxicity of a drug, without worrying and spending time in cell culture and organ model validation.

This will pave the way for a faster and more responsive health-care system worldwide, capable of overcoming unexpected crises such as this one.

Niko: OoC has shown to be an extremely versatile technology with a wide range of applications. OoC companies, like BI/OND and BeOnChip, have the duty to identify the applications that will have a real impact on tomorrow’s health-care. At the same time, we have to take into consideration that, to make these technologies widely available, we need to develop technologies that address the day to day issues faced by biologists working in pharmaceutical companies.

We believe that OoC will contribute to advancing the global health-care system, by proving safe, personalized and reliable solutions.

Bi/ond joins forces

Bi/ond joins forces with the Eindhoven University of Technology and Luxembourg
University to develop a Midbrain-on-a-Chip model for Parkinson’s disease

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder in the ageing
population. It is characterized by the progressive loss of dopaminergic neurons in the substantia
nigra region of the brain. Despite intensive research, the cause of the disease is still elusive, and
there is currently no disease-modifying therapy for its treatment. Therefore, it is crucial to achieving
a better understanding of the mechanisms underlying neuronal degeneration. A major shortcoming
toward this goal is the lack of human-specific predictive models for PD.
A promising approach is the development of human brain organoids, self-assembled from
induced pluripotent stem cell (iPSC), as systems to better mimic in vivo physiology. However,
maintaining these organoids alive for extended periods in standard in vitro conditions is extremely
challenging. Due to their structural complexity and large size, these three-dimensional tissue models
often suffer from suboptimal oxygen and nutrition supply, which severely limits their viability.